Making equivalent sample size an integral part of Bayesian network modelling practices

Steven Mascaro

Confidence

BNs are very good at uncertainty...

...they're less helpful with the weight of evidence for our uncertainty

BAYESIAN INTELLIGENCE

What do we mean by confidence?

Often: How likely is the BN's posterior distribution to match reality?

(Past, present or future)

Knowledge o System allows cultural security Ask about presence Presentation of followups of sam Good 27.5% of CWC individual for patient Moderat... 18.9% CWC AIITheTime 9.8% Yes 28.0% Moderat... 19.5% Sometimes 3.0% Yes 25.0% No 72.0% Poor 34.1% 87.3% No 75.0% Motivation to Ability to confirm provide culturally presence of CWC -liahlvMot ... 36.5% Yes 27.9% Aoderatel...23.3% No 72.1% NotVeryM...40.1% Appropriate managemen Good 29.1% Anderate 18.0% 52.9%

COVID-I (Health calculator based on observational data)

(Implementation support informed by experts/surveys)

APPI F-BN

We will:

- Suggest Equivalent Sample Size (ESS) as a partial answer
- Provide a method for estimating conditional ESS
- Explore its correctness, intuitiveness and whether it really helps with confidence

Equivalent Sample Size (ESS)

We will use this definition:

The estimated weight of evidence for a probability distribution, measured in number of samples.

Measured in "number of samples" – doesn't need to be a real sample It's an estimate, and so clearly subject to uncertainty It seems too simple to cover all use cases (like experts), but maybe not

ESS: simple example

We flip a coin 15 times and get:

With no priors, we estimate:

P(Heads)=0.6 P(Tails)=0.4

By our definition, the ESS of this <u>Bernoulli</u> is 15

Bernoullis don't specify an ESS – we're just noting this case used an ESS of 15

We use a (Bayesian) prior count of 10 for both heads and tails:

15 new samples + 20 samples prior

By our definition, we estimate the ESS of this Bernoulli to be 35

Formal ESS

A <u>Beta</u> distribution can be interpreted as the *probability distribution over a Bernoulli*, once we assume an ESS

We can even specify the Beta directly with the Head/Tail counts:

Beta(9,6)

A <u>Dirichlet</u> is just a Beta with more states. e.g.: **Dirichlet(9,1,5,6)** for 4 states

ø

NTELLIGENCE

Parameter learning refresher:

Dirichlets	(with	ESS)
------------	-------	------

Pesticide i	River Flow	High	Medium	Low
High	Good	18.421	39.474	42.105
High	Poor	1.762	9.521	00.711
Low	Good	75	21.429	3.571
Low	Poor	20	12	68

Pestici.	River	High	Medium	Low	ESS
High	Good	7	15	16	38
High	Poor	1	2	10	21
Low	Good	21	6	1	28
Low	Poor	5	3	17	25

Parameter learning refresher:

Pesticide i	River Flow	High	Medium	Low
High	Good	18.421	39.474	42.105
High	Poor	1.762	9.521	00.711
Low	Good	75	21.429	3.571
Low	Poor	20	12	68

Pestici.	River	High	Medium	Low	ESS
High	Good	7	15	17	39
High	Poor	1	2	<u> </u>	21
Low	Good	21	6	1	28
Low	Poor	5	3	17	25

Parameter learning refresher:

Pesticide i	River Flow	High	Medium	Low
High	Good	17.949	38.462	43.59
High	Poor	1.702	0.021	05.711
Low	Good	75	21.125	0.571
Low	Poor	20	12	68

Pestici	River	High	n Medium	Low	ESS
High	Good	7	15	17	39
High	Poor	1	2	10	21
Low	Good	21	6	1	78
Low	Poor	5	3	17	25

Parameter learning refresher:

Plain CPT

Pesticide i	River Flow	High	Medium	Low
High	Good	17.949	38.462	43.59
High	Poor	4.762	9.524	85.714
Low	Good	75	21.125	0.571
Low	Poor	20	12	68

Dirichlets (with ESS)

Pestici	River	High	Medium	Low	ESS
High	Good	7	15	17	39
High	Poor	1	2	18	21
Low	Good	- 21	6	1	78
Low	Poor	6	3	17	26

Parameter learning refresher:

Dirichlets	(with	ESS)
------------	-------	------

Pesticide i	River Flow	High	Medium	Low
High	Good	17.949	38.462	43.59
High	Poor	4.762	9.524	85.714
Low	Good	75	21.125	0.571
Low	Poor	23.077	11.538	65.385

Pestici	River	High	Medium	Low	ESS
High	Good	7	15	17	39
High	Poor	1	2	18	21
Low	Good	- 21	6	1	78
Low	Poor	6	3	17	26

Using ESS <u>after</u> training

After training, we tend to ignore ESS...

... but it's essential to interpreting the outputs

Example:

Drought Conditions	Annual Rainfall	Good	Poor	
Yes	Below average	33.333	66.667	1
Yes	Average	21.429	78.571	
Yes	Above average	50	50	
No	Below average	33.333	66.667	
No	Average	63.636	36.364	
No	Above average	95	5	

S

What might the ESS be for *any* node, given we put in some evidence *anywhere else*? Let's look at a model trained on 100 cases:

- Estimate the conditional ESS for every node
- Good for expert models, not just trained models
- Good for latent variables
- Show how much ESS is due to priors, data, experts, etc.

Non-goal:

• Good for incorrect structures

(structure assumed true) (actually, just need statistical equivalence)

Initial alternatives considered

Joint probability of data × number of cases

Joint probability of d-connected evidence

number of cases

Х

MI% weighted probability of evidence

× number of cases Too low (d-separated nodes still affect estimate)

Still too low (same effect no matter how long the chain)

> Much too high (MI% falls off too quickly)

Method

- Assume all CPT rows in the BN have an ESS (typically the case in a trained BN in Netica, at least)
- Assume evidence has been entered
- For *n* iterations:
 - For every row in every node:
 - Sample the Dirichlet
 - Replace the row with the sample
 - Do a belief update and store the <u>beliefs</u> for all nodes
- Compute the variance of the <u>beliefs</u> for each node
- Estimate the node's ESS from its belief variance

Sampling a Dirichlet produces a probability vector
e.g. 4 samples of a Dirichlet <5,1,9> (ESS=15): .39 .08 .53 .43 .05 .52 .23 .09 .68 .12 .02 .86
4 samples of a Dirichlet <50,10,90> (ESS=150): .28 .05 .67 .33 .04 .62 .31 .06 .64 .34 .06 .60
Dirichlet sample variance and ESS are inversely related!

Illustration of method

Illustration of method

BAYESIAN INTELLIGENCE

Illustration of method

A PesticideInRiver Table	e (in Bayes net 🗖			
Node: PesticideInRi	ResticideInRiver Tal	ole (in Bayes net		
Chance 👻 🤌	Node: PesticideInRiver +			
Pesticide Use	Chance 👻	Counts		
High				
Low	Pesticide Use	High		
< >	High	26		
	Low	2		
	< >	<		

Example on larger (but still toy) BN

(Trained on 100 cases)

Demo

In particular:

- Does it seem correct?
- Is it intuitive?
- Does it help us see if the inference will match the true distribution?

(assuming the structure is correct!)

- Does it seem correct?
- Is it intuitive?
- Does it help us see if the inference will match the true distribution?

2 node BN

- Does it seem correct? •
- Is it intuitive? •
- Does it help us see if the inference will match the true distribution?

Poor

Drought Conditions			Annua	Annual Rainfall					
		Below	Below_average 0.0			1			
Yes	19.6			Avera	qe	0.0			
No	80.4			Above	ave	rage 100.0			
	ESS	S: 27.7		7.5010	7	lage 100.0	E00:		
		$\langle \rangle$		/			E99	-	
	-	7		\mathbf{k}					
	River Flow								
		Good	86.2			Drought	t Con	Annual Rainfall	Good
		Poor	13.8			Yes		Below average	1
			ES	S: 30.2		Yes		Average	3
						Yes		Above average	4
						No		Below average	4
						No		Average	35
						No		Above average	19

- Does it seem correct?
- Is it intuitive?
- Does it help us see if the inference will match the true distribution?

- Does it seem correct?
- Is it intuitive?
- Does it help us see if the inference will match the true distribution?

Long chains

- Does it seem correct?
- Is it intuitive?
- Does it help us see if the inference will match the true distribution?

3 node variations

- Does it seem correct?
- Is it intuitive?

Hiah

Hiah

Low

• Does it help us see if the inference will match the true distribution?

Annual Rainfall Pesticide Use Pesticide Use Pesticide Use Pesticide Use **Drought Conditions** 10.0 Below_average High 0.0 High 0.0 25.0 High 0.0 0.0 Yes Average 70.0 Low 100.0 Low 100.0 Low 100.0 75.0 Low 100.0 No Above_average 20.0 ESS: -ESS: -ESS: -**Tree Condition** Pesticide in river Pesticide in river **River Flow** Pesticide in river Good 67.1 21.0 40.0 40.0 56.1 High Good High 27.7 Damaged Low 60.0 79.0 Poor 43.9 60.0 5.2 Low Dead ESS: 10.1 ESS: 9.3 **Native Fish Abundance** Native Fish Abundance Native Fish Abundance Native Fish Abundance 18.2 High High 35.0 High 21.7 39.1 High Medium 54.5 21.0 Medium 50.0 Medium 17.8 Medium 27.3 Low Low 44.0 28.3 Low Low 43.1 ESS: 10.2 ESS: 41.8 ESS: 12.6

3 node variations

BAYESIAN INTELLIGENCE

- Does it seem correct?
- Is it intuitive?
- Does it help us see if the inference will match the true distribution?

To the sample and beyond...

(Trained on 1000 cases)

Current & Future Work

